
CPR E / SE 492 BIWEEKLY STATUS REPORT 3
February 22nd - March 1

Senior Design Team 15

Debugger and Visualizer for a Shared Sense of Time

on Batteryless Sensor Networks

Client/Advisor
Dr. Henry Duwe

Team Members

Adam Ford - Report Manager
Allan Juarez - Scribe

Maksym Nakonechnyy - Design Lead
Anthony Rosenhamer - Facilitator

Quentin Urbanowicz - Test Engineer
Riley Thoma - Project Manager

Biweekly Summary

Over the past week, we have been incorporating more of our clients’ feedback into the
code we have written so far. This involved making changes to the trace file format for
the simulator and working more on the interface for the client. We also have continued
to develop data processing on the backend side to parse the trace files and generate
the data needed to be visualized. On the frontend side, we have continued to develop
the network visualization by switching the graphing library to a completely open source
library as per our client’s request.

Accomplishments from the Past Two Weeks

● Backend Team (Adam and Allan)
○ Setup trace file parsing framework and preliminary functionality
○ Batch inserted parsed objects to Mongo for future querying
○ Some contents of a trace file

● Frontend Team (Maksym and Riley)
○ Switched the graphing library from GoJS to ReactFlow and redid the demo

code again.
○ Switched out real time clock for a React component that will display time

and allow it to be editable.
○ Current state of the frontend:

● Simulator Team (Anthony and Quentin)
○ Fixed a bug with the timing handling so that communicating nodes shared

the proper local times
○ Modified the trace file format according to the clients’ recommendations
○ Began work on logic for loading network topology and initial state from a

configuration file
○ Continued work to abstract node behavior logic for easier modification

Trace File Format

● The first byte indicates the trace file version to indicate how parsing should be
handled

● The following bytes represent events occurring in the node network with variable
lengths that depend on the event type

Event Types:

Share Time Request Event (35 bytes)

Real time Event
type

Sender ID Dest. ID Sender
Time

Dest.
Time

Updated
Time

8 bytes 1 byte 1 byte 1 byte 8 bytes 8 bytes 8 bytes

Share Time Response Event (19 bytes)

Real time Event
type

Sender ID Dest. ID Updated
Time

8 bytes 1 byte 1 byte 1 byte 8 bytes

Node State Event (19 bytes)

Real time Event
type

Node ID Updated
Time

8 bytes 1 byte 1 byte 8 bytes

Pending Issues
The frontend team ran into a problem with the graphing library, GoJS, they were using.
This library was a free version of proprietary software that could not be used for further
distribution, which is what Dr. Duwe might want to do in the future. We then had to
research an alternative and completely rewrite our current version of the frontend to use
that alternative.

Individual Contributions

Name Individual Contributions New Hours
(last week)

Total
Hours

Adam Ford
Setup Trace File parsing framework,
and inserted the parsed objects to
MongoDB

6 31

Allan Juarez Setup parsing method to read what is in
the trace file and printing it out 6 31.5

Maksym
Nakonechnyy

Rewrote the frontend app to use
ReactFlow, a replacement for GoJS. 7 33

Anthony
Rosenhamer

Updated the trace file format to include
version data and flexible formats
dependent on the event type
Fixed local time handling to actively
update node times while in the ON state

7 32

Quentin
Urbanowicz

Began work on logic for constructing the
simulated network’s topology
dynamically and setting its initial state
with data from a configuration file.
Continued abstracting and further
modularizing node behavior logic for
easier modification and implementation
of custom behavior.
Added documentation and performed
various refactoring.

6 30

Riley Thoma

Finally found a suitable timer to use for
the Real Time display and implemented
that as far as I could. Played with styling
of panels to work out if the UI our client
wants would work well or not.

6 30

Plans for the Next Two Weeks

● Adam Ford - backend development
○ Rework Trace File parsing for new data format
○ Pseudo-code algorithm for tree production
○ Start writing tree production implementation

● Allan Juarez - backend development
○ Set up logic to parse through new trace data format
○ Storing events into mongo database

● Maksym Nakonechnyy - frontend development
Note: my plans have not changed since the last report because I spent this week
working on our issue with the library.

○ Finish implementing configuration file support.
○ Start implementing a node communication history panel.
○ Look into libraries to display network statistics.

● Anthony Rosenhamer - simulator development
○ Continue to modify the trace file format to include configuration details
○ Add more logic for handling the communication interface to allow nodes to

communicate differently
● Quentin Urbanowicz - simulator development

○ Finish modularizing node behavior logic
○ Continue implementing dynamic construction and initialization of the

simulated network of nodes using data from a configuration file
○ Continue researching and begin implementing a system for introducing

pseudorandom variability into node behavior
● Riley Thoma - frontend development

○ Add node coordinate information to node information panel
○ Finish hooking up the Real Time timer component with the backend

request
○ Modify the UI to fit our client’s needs for new graphs and diagrams to be

displayed

Summary of Advisor Meetings

February 26th:

We discussed our planned Trace File format to ensure that it will cover all
necessary information in a simulation. We received feedback to increase all time fields
to be 8 bytes and consider having variable event types, rather than a single catch-all.

Additionally, we discussed some more frontend specifics, including the
communication lines between nodes and a more specific layout of the application. This
will aid the frontend team in finalizing libraries. We also covered the specifics of the
graphs that would be displayed on the frontend in addition to the network structure
visualization.

